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Abstract
We propose a fault-tolerant implementation of the quantum Householder reflection, which is a
key operation in various quantum algorithms, quantum-state engineering, generation of arbitrary
unitaries, and entanglement characterization. We construct this operation using the modular
approach of composite pulses and a relation between the Householder reflection and the quantum
phase gate. The proposed implementation is highly insensitive to variations in the experimental
parameters, which makes it suitable for high-fidelity quantum information processing.
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1. Introduction

The Householder reflection (HR) [1] is a very powerful tool for
a large variety of problems in data analysis: QR decomposition,
least-square optimization, finding eigenvalues of large matri-
ces, etc. The decomposition of matrices by HR has been listed
as one of the ten greatest discoveries in computational
mathematics of the 20th century by the editors of SIAM [2].

Recently, it has been shown that HR has important
applications in quantum physics and quantum information
too, for instance in quantum algorithms [3, 4], for synthesis of
unitary matrices [5], in quantum state engineering [6], as an
entanglement witness [7], etc. Furthermore, it has been found
[5, 8] that HR is produced naturally by a particular quantum
system: under certain conditions the propagator of an N-pod
quantum system, consisting of N degenerate states coupled
simultaneously to another state, is given exactly by a HR.

To this end, the necessary conditions in the N-pod
implementation are of resonant type (specific values of the
interaction duration, the couplings and the detuning) and
therefore, the thereby generated HR is prone to parameter
errors, similarly to qubit addressing by resonant pulses of
precise area.

In this paper we propose a fault-tolerant modular
implementation of the HR operator by using the technique of
composite pulses (CPs). The latter is a highly accurate and
robust tool for quantum control, traditionally used in nuclear
magnetic resonance (NMR) [9–12], quantum optics [13–15]
and quantum computation [16–20]. Ideas similar to composite
pulses have been also used for dynamical decoupling [21], as
well as outside quantum physics, e.g. in polarization optics
[22] and frequency conversion [23]. A composite pulse is a
sequence of pulses with well defined relative phases, which
are used as control parameters and determined from the
condition to produce a desired excitation profile. Of special
interest to the present problem are the broadband composite
pulses, which produce high-fidelity excitation profiles, which
are robust to variations in one or more experimental para-
meters around certain values of these parameters. The con-
struction of composite HR is based on a relation between the
HR and the quantum phase gate, and uses the composite
phase gates introduced recently [24].

This paper is organized as follows. In section 2 we briefly
sketch the theory behind composite pulses and introduce the
HR. In section 3 we discuss how to combine these in order to
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obtain a robust composite HR. Section 4 presents the
conclusions.

2. Composite pulses and Householder reflections

In this section we briefly review the theory of composite
pulses, we show how they can be used to produce an error-
resilient phase gate, and we introduce the Householder
transformation.

2.1. Composite pulses

To explain the idea of CPs, let us consider a simple two-state
quantum system, coherently driven by an external field. Such
a system is described by the time-dependent Schrödinger
equation

∂ = t t tc H ci ( ) ( ) ( ), (1)t

where =t c t c tc( ) [ ( ), ( )]T
1 2 is a column vector containing the

probability amplitudes of the two states ψ∣ 〉1 and ψ∣ 〉2 , and the
Hamiltonian is

Ω ψ ψ= +δ−t tH( ) ( 2) ( )e h.c. (2)ti ( )
1 2

Here Ω t( ) is the Rabi frequency and ∫δ Δ= ′ ′t t t( ) ( )d
t

0
,

where Δ ω ω= −0 is the detuning between the field
frequency ω and the Bohr transition frequency ω0. (Time
dependence may be present in Δ due to time-dependent
(chirped) field frequency or dynamic Stark or Zeeman shift in
ω0.) The propagator of the system, which is an operator that
connects the initial and final amplitudes, =t tc Uc( ) ( )f i , can
be parameterized by using the two complex Cayley–Klein
parameters a and b,

=
−

a b

b a
U

* *
. (3)

⎡
⎣⎢

⎤
⎦⎥

A constant phase shift in the Rabi frequency Ω Ω→ ϕt t( ) ( )ei

is imprinted onto the off-diagonal elements of the propagator,

=
−

ϕ
ϕ

ϕ−

a b

b a
U

e

*e *
. (4)

i

i

⎡
⎣⎢

⎤
⎦⎥

A composite pulse is by definition a sequence of pulses with
different phases. The propagator of a composite pulse, for a
sequence of n pulses, is

ϕ ϕ ϕ= ⋯( ) ( ) ( )U U U U . (5)n
n

( )
2 1

If the phases ϕk are chosen appropriately, the propagator U n( )

can be made much more robust to variations in the
experimental parameters than the single-pulse propagator U.
This is the basic idea behind CPs and in such a way one can
produce a huge variety of broadband (BB), narrowband (NB),
and passband (PB) CPs with respect to variations in
essentially any experimental parameter [13]. It is of particular
relevance to us how CPs can be used to construct a quantum
phase gate.

2.2. Composite phase gate

A single-qubit phase gate is defined as the 2 × 2 matrix

Φ =
α

α−
e 0

0 e
, (6)

i 2

i 2

⎡
⎣⎢

⎤
⎦⎥

where α is the phase difference between the two states of the
qubit, accumulated due to the gate operation. It was recently
demonstrated [24] that the propagator of a sequence of two
CPs can be made equal to Φ. Explicitly, we have

Φ = U U , (7)CP CP2 1

where

ϕ ϕ ϕ= ⋯( ) ( ) ( ) aU U U U , (8 )nCP 2 11

ξ ξ ξ= ⋯( ) ( ) ( ) bU U U U , (8 )nCP 2 12

and

ξ ϕ π α= + + 2. (9)k k

The phases ϕk and ξk are just the phases of the CPs and are
chosen depending on which type of error-resilient CP we
want to construct. A detailed description of the composite
phase gate is presented elsewhere [24].

2.3. Householder reflection

The standard HR is defined as

= −v v vM I( ) 2 , (10)

where I is the identity operator and ∣ 〉v is an N-dimensional
normalized complex column-vector. The HR (10) is both
Hermitian and unitary, = = −M M M† 1, which means that M
is involutary, =M I2 . In addition, = −Mdet 1. For real ∣ 〉v
the Householder transformation (10) has a simple geometric
interpretation: reflection with respect to an −N( 1)-dimen-
sional plane with a normal vector ∣ 〉v . In general, the vector ∣ 〉v
is complex and it is characterized by −N2 2 real parameters
(two parameters are discounted due to the normalization
condition and the unimportant global phase).

The generalized HR is defined as

φ = + −φ( )v v vM I( ; ) e 1 , (11)i

where φ is an arbitrary phase. The standard HR (10) is a
special case of the generalized HR (11) for φ π= :

π ≡v vM M( ; ) ( ). The generalized QHR is unitary,
φ φ φ= = −−v v vM M M( ; ) ( ; ) ( ; )1 † , and its determinant is
= φMdet ei .

It was shown earlier [5, 8] that the standard and gen-
eralized HR can be realized in an N-pod quantum system,
wherein N degenerate states are coupled to an ancillary state,
as shown in figure 1, or by using a similar coupling scheme
and a STIRAP process [25]. We will now briefly review the
implementation of HR, and then show how it can be
improved by CPs. Let us assume that the couplings Ωj in
figure 1 have the same time dependence f (t), but different
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amplitudes χj and phases βj,

Ω χ= βt f t( ) ( )e . (12)j j
i j

Such a system is described by the Hamiltonian

Ω
Ω

Ω
Ω Ω Ω Δ

=

⋯
⋯

⋮ ⋮ ⋱ ⋮ ⋮
⋯
⋯



t

t

t

t t t t

H
2

0 0 0 ( )
0 0 0 ( )

0 0 0 ( )

( ) ( ) ( ) 2 ( )

. (13)
N

N

1

2

1
*

2
* *

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥
By using the Morris–Shore transformation [26] one can
reduce this ( +N 1)-state problem to a set of −N 1 uncoupled
states and a two-state system (figure 1, bottom) with a
Hamiltonian, which involves the same detuning Δ as in
equation (13) and the coupling is the root-mean-square (rms)

Rabi frequency1 Ω Ω= ∑ ∣ ∣=t t( ) ( )j
N

j1
2 ,

Ω
Ω Δ

=  t
t t

H
2

0 ( )
( ) 2 ( )

. (14)MS

⎡
⎣⎢

⎤
⎦⎥

Explicitly, the new basis states after the MS transformation
read (written in the basis ∣ 〉 ∣ 〉 … ∣ 〉 ∣ 〉N e1 , 2 , , , )

χ χ= − …d
X

a
1

, , 0,0, , 0 (15 )
T

1
2

2 1
⎡⎣ ⎤⎦

χ χ χ χ= − …d
X X

X b
1

, , , 0, , 0 (15 )
T

2
2 3

1 3 2 3 2
2⎡⎣ ⎤⎦

χ χ χ χ χ χ= − …d
X X

X c
1

, , , , 0, , 0 (15 )
T

3
3 4

1 4 2 4 3 4 3
2⎡⎣ ⎤⎦

χ χ χ χ= … −−
−

−d
X X

X d
1

, , , , 0 (15 )N
N N

N N N
T

1
1

1 2 1
2⎡⎣ ⎤⎦

χ χ χ= …b
X

e
1

, , , , 0 (15 )
N

N
T

1 2
⎡⎣ ⎤⎦

= …e f[0, , 0,1] , (15 )T

where

∑ χ= = …
=

X n N( 2, 3, , ). (16)n k

n

k1
2

In such a way the Hilbert space is decomposed into two
subspaces: an ( −N 1)-dimensional dark subspace comprising
the states ∣ 〉 … ∣ 〉−d d, , N1 1 and a two-dimensional subspace
(∣ 〉 ∣ 〉b e, ) orthogonal to the dark subspace. The propagator of
the MS two-state system can be written as

=
−

c d

d c
U

* *
. (17)MS

⎡
⎣⎢

⎤
⎦⎥

It is straightforward to verify that if = φc ei (and hence,
d = 0) the propagator of the original N-state degenerate
manifold is equal to the generalized HR (11),

φ= vU M( , ), (18)

with

χ
χ χ χ= …β β βv

1
e , e , , e , (19)N1

i
2

i i T
N1 2⎡⎣ ⎤⎦

where χ χ= = ∑ =XN j
N

j1
2 is the rms peak Rabi frequency

and β β β= −jm j m.

The condition = φc ei , as seen from equations (17) and
(6), corresponds exactly to a phase gate in the MS two-state
system (14), with α φ= 2 . Traditionally, there are several
ways to produce such phase shifts. One way is to use a
dynamic phase gate [27], which only requires a single far-off-
resonant pulsed field. Another basic approach is the geometric
phase gate [28], which has certain advantages in terms of
robustness against parameter fluctuations that come at the cost
of more demanding implementations. An alternative phase
gate uses adiabatic passage and relative laser phases [29]. In
the present work, we use the approach based on composite
pulses, which has been described in [24], and we apply the
same approach to construct robust and high-fidelity HRs.

3. Composite Householder reflection

As seen in the previous section, in order to create a gen-
eralized HR, we need to set the value of the Cayley–Klein
parameter to = φc ei . This corresponds to the creation of a
phase gate, which, as recently demonstrated [24], can be
constructed using CPs.

3.1. Composite HR resilient to pulse area errors

As the simplest example, we will first examine the broadband
composite HR, which is robust against variations in the pulse
area. Such a HR can be produced by a sequence of two
broadband CPs. These pulses have been extensively studied
and demonstrated in the literature [11]. Here, we use the
symmetric resonant pulses, derived in [13], with phases given

Figure 1. Level scheme for the N-pod, which realizes the House-
holder transformation. (bottom) The level scheme after the Morris–
Shore transformation.

1 We have chosen the MS basis such that the rms Rabi frequency is real.
However, a common phase shift in the couplings Ωk would still translate as a
phase shift in the rms Rabi frequency Ω.
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by the formula

ϕ π= − = …k k
n

k n( 1) ( 1, 2, , ), (20)k

and the phases of the second CP are given by equation (9) for
α φ= 2 . The phases ϕk are the relative phases of the
couplings for each pulse, which means that if for the first
pulse they are equal to βj (see equation (12)), then the phases
for the kth pulse are β ϕ+j k. Explicitly, the phases of the first
few CP pulses are (modulo π2 )

π a0,
2

3
, 0 , (21 )⎜ ⎟⎛

⎝
⎞
⎠

π b0,
2

5
,

6

5
,

2

5
, 0 , (21 )⎜ ⎟⎛

⎝
⎞
⎠

π c0,
2

7
,

6

7
,

12

7
,

6

7
,

2

7
, 0 , (21 )⎜ ⎟⎛

⎝
⎞
⎠

π d0,
2

9
,

2

3
,

4

3
,

2

9
,

4

3
,

2

3
,

2

9
, 0 . (21 )⎜ ⎟⎛

⎝
⎞
⎠

As an example, the propagator of the actual operation for
n = 3 is

φ π φ π π φ
π φ π

′ = + + +
× +

vM U U
U U U U

( , ) ( ) (2 3 )
( ) (0) (2 3) (0), (22)

where each of the propagators ϕU( )k corresponds to resonant
excitation with a rms pulse area equal to π, a Rabi frequency
distribution corresponding to the vector v (see equation (19))
and relative phases β ϕ+j k.

As already noted, we assume that all the fields, which
couple the N ground states to the excited one, are produced by
a single source. This means that a systematic error in this
source will translate into the same systematic error of all the
couplings, which allows the treatment of our system to be the
same as in the case of the two-state phase gate. Explicitly, we
can write the deviations ϵ in the Rabi frequencies as

Ω χ χ ϵ= → +β βt f t f t( ) ( )e (1 ) ( )e (23)j j j
i ij j

and hence the rms Rabi frequency deviates with the same
factor ( ϵ+1 ). The same reasoning is valid for the pulse areas.
To test the performance of the composite HRs, we define the
infidelity of the actual operation ′M , compared to the desired
HR φvM( , ) as

= − ′( )D
N

M M1
1

abs Tr . (24)†⎡⎣ ⎤⎦
It can be shown that the infidelity does not depend on the
target vector ∣ 〉v . In figure 2 we plot the infidelity of the BB
composite standard and generalized HR, for a phase of
φ π= 2. One can see that by increasing the number of
pulses, the robustness of the operation also increases.

Continuing the analogy between composite phase gates
and composite HRs, one can also build an adiabatic compo-
site HR [14], detuning-compensated HRs [13], etc.

3.2. Composite HR resilient to arbitrary errors

Particularly interesting are the universal composite HRs,
which allow compensation of systematic errors in any para-
meter of the field. This is achieved by using the recently

Figure 2. Infidelity of the broadband HR as a function of the rms
pulse area, for N = 3 and =n 1, 3, 5, 9 (from inside to outside). The
left frames refer to the standard HR (φ π= ) and the right frames to
the generalized HR with φ π= 2. Lower frames show the same
infidelity as upper frames, but in a logarithmic scale.

Figure 3. Infidelity of the universal standard HR as a function of the
pulse duration and the detuning for N = 3. The pulse shape is
rectangular and the composite phases in the bottom frame are
ϕ π= (0, 11, 2, 11, 0) 6k .
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developed universal composite pulses [15]. The phases of the
universal CPs, for =n 3, 5, 7, are

π a0,
1

2
, 0 , (25 )⎜ ⎟⎛

⎝
⎞
⎠

π b0,
5

6
,

1

3
,

5

6
, 0 , (25 )⎜ ⎟⎛

⎝
⎞
⎠

π c0,
11

6
,

1

3
,

11

6
, 0 , (25 )⎜ ⎟⎛

⎝
⎞
⎠

π d0,
11

12
,

5

6
,

17

12
,

5

6
,

11

12
, 0 , (25 )⎜ ⎟⎛

⎝
⎞
⎠

π e0,
23

12
,

5

6
,

5

12
,

5

6
,

23

12
, 0 , (25 )⎜ ⎟⎛

⎝
⎞
⎠

where for n = 5 and n = 7 we have two different universal CP
solutions. A contour plot of the infidelity for the universal
composite HR is shown in figure 3. As one can see from the
plot, a simple sequence of two single resonant pulses (top
frame) cannot achieve high robustness, while using a
sequence of n = 5 universal CPs (bottom frame), we can
achieve high fidelity for a large range of parameter values.

4. Conclusion

We have proposed a fault-tolerant implementation of the
Householder reflection operator. The implementation uses the
concept of composite (modular) pulses, which is a well
developed technology in current experiments, and hence the
proposed method is amenable to a relatively simple physical
realization. The proposed implementation requires good control
of the relative phases of the pulses in the composite sequence
and the ratios of the couplings in the N-pod system. In return, it
is highly accurate and highly insensitive to errors in the other
experimental parameters, which makes it suitable for high-
fidelity quantum control and quantum information processing.
Furthermore, our proposal demonstrates the advantages of
using modular design, which is a very popular design approach
in engineering, to realize robust quantum operations.

Acknowledgments

BTT and NVV acknowledge financial support by the EC
Seventh Framework Programme under Grant Agreement No.
270843 (iQIT), Bulgarian NSF grants DRila-01/4 and DMU-
03/103. EK and BTT acknowledge financial support by an
SUTD Start-Up Research Grant, Project No. SRG EPD 2012
029 and an SUTD-MIT International Design Centre (IDC)
Grant, Project No. IDG 31300102.

References

[1] Householder A S 1958 J. ACM 5 339
[2] https://siam.org/pdf/news/637.pdf
[3] Grover L K 1997 Phys. Rev. Lett. 79 325
[4] Ivanov S S, Ivanov P A and Vitanov N V 2008 Phys. Rev. A 78

030301

Ivanov S S, Tonchev H S and Vitanov N V 2012 85
062321 ibid

[5] Ivanov P A, Kyoseva E S and Vitanov N V 2006 Phys. Rev. A
74 022323

[6] Ivanov P A, Torosov B T and Vitanov N V 2007 Phys. Rev. A
75 012323

[7] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[8] Kyoseva E S and Vitanov N V 2006 Phys. Rev. A 73 023420
[9] Levitt M H and Freeman R 1979 J. Magn. Reson. 33 473
[10] Freeman R, Kempsell S P and Levitt M H 1980 J. Magn.

Reson. 38 453
[11] Levitt M H 1986 Prog. Nucl. Magn. Reson. Spectrosc. 18 61
[12] Freeman R 1997 Spin Choreography (Spektrum: Oxford)
[13] Torosov B T and Vitanov N V 2011 Phys. Rev. A 83 053420
[14] Torosov B T, Guérin S and Vitanov N V 2011 Phys. Rev. Lett.

106 233001
Schraft D, Halfmann T, Genov G T and Vitanov N V 2013

Phys. Rev. A 88 063406
[15] Genov G T, Schraft D, Halfmann T and Vitanov N V 2014

Phys. Rev. Lett. 113 043001
[16] Hill C D 2007 Phys. Rev. Lett. 98 180501
[17] Hayes D, Clark S M, Debnath S, Hucul D, Inlek I V, Lee K W,

Quraishi Q and Monroe C 2012 Phys. Rev. Lett. 109
020503

[18] Schmidt-Kaler F, Häffner H, Riebe M, Gulde S,
Lancaster G P T, Deuschle T, Becher C, Roos C F,
Eschner J and Blatt R 2003 Nature 422 408

[19] Timoney N, Elman V, Glaser S, Weiss C, Johanning M,
Neuhauser W and Wunderlich C 2008 Phys. Rev. A 77
052334

[20] Jones J A 2011 Prog. NMR Spectrosc. 59 91
Ichikawa T et al 2012 Phil. Trans. R. Soc. A 370 4671

[21] Unruh W G 1995 Phys. Rev. A 51 992
Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
Shiokawa K and Lidar D A 2004 Phys. Rev. A 69 030302
Khodjasteh K and Lidar D A 2005 Phys. Rev. Lett. 95 180501
Pan Y, Xi Z-R and Cui W 2010 Phys. Rev. A 81 022309

[22] McIntyre C M and Harris S E 1968 J. Opt. Soc. Am. 58
1575

Ivanov S S, Rangelov A A, Vitanov N V, Peters T and
Halfmann T 2012 J. Opt. Soc. Am. A 29 265

Peters T, Ivanov S S, Englisch D, Rangelov A A,
Vitanov N V and Halfmann T 2012 Appl. Opt. 51 7466

Dimova E S, Ivanov S S, Popkirov G S and Vitanov N V 2014
J. Opt. Soc. Am. A 31 952

Rangelov A A and Kyoseva E 2014 arXiv:1411.4238
[23] Genov G T, Rangelov A A and Vitanov N V J 2014 J. Opt. 16

062001
Rangelov A A, Vitanov N V and Montemezzani G 2014 Opt.

Lett. 39 2959
[24] Torosov B T and Vitanov N V 2014 Phys. Rev. A 90 012341
[25] Rousseaux B, Guérin S and Vitanov N V 2013 Phys. Rev. A 87

032328
[26] Morris J R and Shore B W 1983 Phys. Rev. A 27 906

Rangelov A A, Vitanov N V and Shore B W 2006 Phys. Rev.
A 74 053402

Shore B W 2014 J. Mod. Opt. 61 787
[27] Calarco T, Jaksch D, Cirac J I and Zoller P 2002 J. Opt. B

4 430
[28] Berry M V 1984 Proc. R. Soc. Lond. A 392 45

Unanyan R G, Shore B W and Bergmann K 1999 Phys. Rev. A
59 2910

Unanyan R, Fleischhauer M, Shore B W and Bergmann K
1998 Opt. Commun. 155 144

Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A,
Oi D K L and Vedral V J 2000 Mod. Opt. 47 2501

[29] Lacour X, Guérin S, Vitanov N V, Yatsenko L P and
Jauslin H R 2006 Opt. Commun. 264 362

Goto H and Ichimura K 2004 Phys. Rev. A 70 012305

5

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 135502 B T Torosov et al

http://dx.doi.org/10.1145/320941.320947
https://siam.org/pdf/news/637.pdf
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevA.78.030301
http://dx.doi.org/10.1103/PhysRevA.78.030301
http://dx.doi.org/10.1103/physreva.85.062321
http://dx.doi.org/10.1103/physreva.85.062321
http://dx.doi.org/10.1103/PhysRevA.74.022323
http://dx.doi.org/10.1103/PhysRevA.75.012323
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/PhysRevA.73.023420
http://dx.doi.org/10.1016/0022-2364(80)90327-3
http://dx.doi.org/10.1016/0079-6565(86)80005-X
http://dx.doi.org/10.1103/PhysRevA.83.053420
http://dx.doi.org/10.1103/PhysRevLett.106.233001
http://dx.doi.org/10.1103/PhysRevA.88.063406
http://dx.doi.org/10.1103/PhysRevLett.113.043001
http://dx.doi.org/10.1103/PhysRevLett.98.180501
http://dx.doi.org/10.1103/PhysRevLett.109.020503
http://dx.doi.org/10.1103/PhysRevLett.109.020503
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1016/j.pnmrs.2010.11.001
http://dx.doi.org/10.1098/rsta.2011.0358
http://dx.doi.org/10.1103/PhysRevA.51.992
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.69.030302
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevA.81.022309
http://dx.doi.org/10.1364/JOSA.58.001575
http://dx.doi.org/10.1364/JOSA.58.001575
http://dx.doi.org/10.1364/JOSAA.29.000265
http://dx.doi.org/10.1364/AO.51.007466
http://dx.doi.org/10.1364/JOSAA.31.000952
http://arXiv.org/abs/1411.4238
http://dx.doi.org/10.1088/2040-8978/16/6/062001
http://dx.doi.org/10.1088/2040-8978/16/6/062001
http://dx.doi.org/10.1364/OL.39.002959
http://dx.doi.org/10.1103/PhysRevA.90.012341
http://dx.doi.org/10.1103/PhysRevA.87.032328
http://dx.doi.org/10.1103/PhysRevA.87.032328
http://dx.doi.org/10.1103/PhysRevA.27.906
http://dx.doi.org/10.1103/PhysRevA.74.053402
http://dx.doi.org/10.1080/09500340.2013.837205
http://dx.doi.org/10.1088/1464-4266/4/4/334
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1103/PhysRevA.59.2910
http://dx.doi.org/10.1016/S0030-4018(98)00358-7
http://dx.doi.org/10.1080/09500340008232177
http://dx.doi.org/10.1016/j.optcom.2006.01.059
http://dx.doi.org/10.1103/PhysRevA.70.012305

	1. Introduction
	2. Composite pulses and Householder reflections
	2.1. Composite pulses
	2.2. Composite phase gate
	2.3. Householder reflection

	3. Composite Householder reflection
	3.1. Composite HR resilient to pulse area errors
	3.2. Composite HR resilient to arbitrary errors

	4. Conclusion
	Acknowledgments
	References



